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The effects of quantum fluctuations on various fragmentation reactions, from the pro-
duction of intermediate mass fragments in Au-+Au collisions to atomic cluster formation,
are studied by using the recently developed Quantal Langevin model. The larger fluctu-
ations and the intriusic distortion enhances fragments with low excitation energies. The
fragmentation patterns in quantal and classical simulations are discussed in terms of an
effective classical temperature.

1. INTRODUCTION

Understanding the properties of various phases of hadronic matter and the associated
phase transitions is one of the main goals of heavy-ion physics. At intermediate energies,
the relation between multifragmentation [1-3] and the liquid-gas phase transition has
recently received renewed interest, afler the extraction of a caloric curve of hot nuclear
matter [4] suggesting that the phase transition is of first-order.

For the understanding of this phase transition, we have to invoke models which take due
account of the quantum statistical nature of the nuclear system, since the nuclear liquid
phase may be characterized by its quantal statistical nature, E* o« T2. Therefore, the
applicability of semi-classical transport models, such as the Quantum Molecular Dynamics
(QMD), to these phenomena can be problematic. Their equations of motion are derived
from a time-dependent variational principle, which neglects the effects of energy spectrum
in a wave packet. Then the resulting statistical properties are essentially classical.

To take approximate account of the quantal statistical features of the evolving nu-
clear system, we incorporate a stochastic term given by the recently developed Quantal
Langevin model [5.6] into wave packet dynamics. The Quantum Langevin model has
been constructed based on the requirement that the system evolves to relax towards
quantum-statistical equilibrium, then it is expected to improve the description of frag-
ment formation processes, where the quantuin statistics plays an important role.

In this report, we present the basic idea of the Quantal Langevin model and apply it to
various fragmentation processes - - nuclear fragmentation and atomic cluster formation in
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a canonical ensemble, intermediate mass fragment (IMF) production in Au+Au collisions,
and twin-single hyperfragment production in =~ absorption at rest.

2. BASIC IDEA

The starting point of our discussion is the quantal statistics at equilibrium. In the case
of a microcanonical ensemble, the statistical property of the system is described by the
microcanonical phase volume,

AE) =Tr (8 = ) = [ d00ul(Z) . pu(2Z) = (ZVo(E ~ 1)|2) , (1)

where |Z) represents a parameterized and normalized quantum state, and [ dI' |Z)(Z]|
resolves unity. From this phase volume, we see that the probability to find a state |Z)
is proportional to py = (Z|6(H — E)|Z). Since we are considering the evolution of wave
packets, the expectation value of the Hamiltonian operator H = (Z|H|Z) is not necessarily
the same as the given energy E. since wave packets are not energy eigenstates. On the
other hand, a naive application of the normal variational principle to the parameterized
wave packets results in the probability proportional to 6(E — H), if the system is ergodic
enough. This corresponds to the limit where the quantal energy dispersion within one
wave packet is negligible, 02(2) = (Z|H* — H*|Z) — 0.

To produce the desired equilibrium distribution ¢(Z;¢) x pg(Z) = exp(~Fx(Z)), it
is necessary to adopt the fluctuation-dissipation dynamics described by, for example, the
Fokker-Planck equation,

D¢(Z;1) 0F:(Z)

Dt I: Ea (V ZA/U) )}(f), W:_';M!’j—aq;—’ (2)

where {¢;} are canonical variables satisfying dU = []; dg;. The second relation comes from
the requirement that the equilibrium distribution should be a static solution of Eq. (2).
In numerical simulations, it is easier to handle the corresponding Langevin equation,

Dq,'
Dt

=V, + ZgijCj , g-g=M, <GtYGEH') =266t —1") . (3)
J

Here we have ignored the diffusion-induced drift term [7].

Although the stochastic term appearing here is somewhat similar to the usual random
force that arises from the interaction with the heat bath, the present random force arises
from the energy dispersion of each wave packet and thus has a purely quantal origin.
Therefore, we refer to this random force as the Quantal Langevin force [6].

Once the Quantal Langevin model and its equation of motion are formulated. the
statistical properties of the system are determined by the “free energy” F(Z), or the
energy eigenvalue distribution within each wave packet pz(Z). In the following sections,
we introduce an approximate method to evaluate this distribution.

3. FRAGMENTATION AT FIXED TEMPERATURE

As a preparation for the dynamical scenarios, where the energy is given, we first discuss
the fragmentation properties in thermal equilibrium. We then need the partition function
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at the given temperature T =1/,
25 = Tr (exp(~pH)) = / dTWs(Z), Wy(2Z)=(Z

The statistical weight Wj is related to the energy distribution pz by the Laplace trans-
formation. We have proposed that the harmonic approzimation to this statistical weight,

W;(Z) = exp [—g (1 - e‘ﬁD)] , D(Z)y=col/H, (5)

exp(~AH)\|Z) . (4)

gives a good description {5,6,8]. It is an improved cumulant expansion with the desired
asymptotic behavior; Ws(Z) converges to a finite value less than one in the low tempera-
ture limit, 8 — oo, and reduces to a normal Boltzmann factor exp(—GH) at high tempera-
tures. As an example, we show in Fig. 1 the energy-temperature curve calculated with the
harmonic approximation based on the Antisymmetrized Molecular Dynamics(AMD) [9]
wave functions. Unfortunately, we could not see the energy gap, probably because the
system is too small (A = 40). However, it is clear that the temperature initially grows as
T x VE which is a typical behavior of the Fermi gas or liquid phase, and it converges to
a classical line T = 2E/3A + constant at high temperatures.

20 Figure 1. The mean excitation energy per
< 40 nucleon E*/A for a canonical ensemble of 40
g 15 TCa nucleons (20 protons and 20 neutrons) con-
'15’10 i fined in a sphere with a radius 2.0 fm as a
;«,!; function of the temperature 7'. Circles show
g the calculated results with the harmonic ap-
e Sr proximation (6] based on the AMD model.

> Solid and dashed lines show the temperature
00 5 10 15 20 25 30 35 in gas and liquid phase. Calculated results
Excitation Energy / Nucleon (MeV) are taken from Refs. [5,6].

Next, we apply the dynamical treatment to nuclear fragmentation [10] and atomic
cluster formation [11] processes at fixed temperatures. By replacing Fz(Z) to F3(Z) =
log(W;s(Z)) in Eq. (2), the Quantal Langevin equation at a given temperature is derived.

In the harmonic approximation (5). the form of the drift term is easily fouad,
oH _ 1 —exp(-3D)

JE]J bl o = BD f: 1 L] (6)

This relation represents the modified Finstein relation; it deviates from the classical
fluctuation-dissipation theorem which is recovered for @ = 1. Since the diffusion term
becomes relatively stronger than the drift term, the Quantal Langevin force generates
more fluctuations in the space of {¢;}. By using the phase space variables, {¢;} = {r, p},
the Quantal Langevin equation can now be written as,

P = F-afM’ (v—u) — M’ u +g° (", (7)

P = v+aBM -f +g -€ . (8)
_ OH _OH

f = —6—1', 'v::—a-?;. (9)
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We have subtracted the energy dispersion related to the spurious zero-point center-of-
mass motion of clusters in Eq. (7) by considering the relative velocity of each particle
relative to the local collective motion with the velocity u, which is close to the fragment
CM motion [10,11].

In addition to the modification of the Einstein relation, we have shown that the thermal
distortion effects on the intrinsic structure of wave packets are important in evaluating
observables. The definition of the thermal average of an operator reads,

<05 = ZLTr (Oexp(—ﬁf{)) = ,} AP Ws(2Z) O5(Z) , (10)
B 1
0s(Z) = (Z5p)01Z5p2)[{Z512) Z512) . |Zs)s) = expl—BH [2)|Z) . (11)

Thus, the thermal mean value < O > is not a weighted average of the quantum expec-
tation value with respect to |Z), but with respect to its thermally distorted state |Z,).
This distortion makes the behavior of mean energy at low temperature quantal and signif-
icantly affects the nuclear fragmentation process. We have adopted the cooling equation
to take this thermal distortion into account [6.10.11].
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In Fig. 2, we show the calculated nuclear fragment and atomic cluster mass distri-
butions at given temperatures. In the nuclear case, we put 40 nucleons in a box with
periodic boundary condition, and the quantal (a<1) or classical (a=1) Langevin force
is inclnded in the QMD model. In the atomic case, the dynamics of 100 argon atoms
interacting via a Lenard-Jones potential in a box is simulated. In the classical treatment,
the thermal distortion is ignored. It is clear that the quantum fluctuation effect on the
atomic cluster mass distribution is opposite to that on nuclear fragmentation. Namely,
the inclusion of the quantum Langevin force produces a steeper slope in the atomic cluster
mass distribution at high temperatures, and the opposite in the nuclear cases
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This difference can be intuitively understood by considering the effective temperature of
the Langevin equation and the quantal distortion effects by the operator exp(—ﬂf{ /2) [11].
Since the atoms in clusters are well separated with each other compared with the width
of wave packets, the effects of the distortion on the cluster configuration are negligible.
By means of the Einstein relation, we can extract the effective classical temperature of
Eq. (7) as the square of the diffusion coefficient divided by the drift coefficient,
g2 T D

= —p>1T. (12)

Tn = afM o  (1—eDIT)

This estimate ignores the correction terms from the cluster center-of-mass motion and the
matrix nature of g and M. A classical model calculation at this effective temperature Teq,
has been shown to yield results that are similar to those with the quantum fluctuation at
the real temperature T' [11].

On the other hand, the separation between nucleons is comparable to the wave packet
width in the nuclear case. Under such a condition, the effective temperature for the
distorted momentum will govern the fragment distribution. For example, in the mechan-
ically stable region, the Quantal Langevin equation and the effective temperature for the
distorted momentum in the fragment rest frame reads

p=ePTf_afM v +e P g ¢, plt) = pilZppe(t) ~ P pi(t) . (13)

T D

T apM T eDIT

<T. (14)

It is expected, again, that a classical calculation of nuclear fragmentation at Tl gives
similar results as those with quantum fluctuation at T'. However, this is true only in
the mechanically stable region, where the second equation in (13) holds. At around the
critical temperature, the thermal distortion enhances the small fluctuations generated by
the Quantal Langevin force and thus causes cluster rearrangements. This is the mechanism
of multifragmentation suggested by the Quantal Langevin model.

4. FRAGMENTATION IN NUCLEUS-NUCLEUS COLLISIONS

4.1. Multifragmentation in Au+Au Collisions

By using the approximate statistical weight Wy(Z) for each wave packet, we can now
apply the Quantal Langevin model to the nucleus-nucleus collision, where the energy is
given. The harmonic approximation described above is equivalent to assuming that each
wave packet has a (discrete) Poisson energy distribution. In nucleus-nucleus collisions,
the total energy is much larger than the effective level spacing D(Z), and we may then
adopt a continuous Poisson distribution,

(H/D)*/P
NE/D+1)
The drift coefficient can then be readily calculated,
oM . _0F _ M-E

qu ’ oH 0’%

pe(2) = (Z|8(E - H)|Z)

exp(—H/D) . (15)

Vi ™ =Buy M
J
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It is interesting to note that the drift term acts to restore the energy: when the Hamil-
tonian H is greater than the given energy E, the drift term reduces it, and vice versa.
Furthermore, since the phase volume is larger for larger H, the dynamical trajectory usu-
ally goes through the region H > E. Therefore, fragments are cooled down in the final
stage of collision, without emitting nucleons. In other words, although the wave packet
wave functions with various expectation energies can contribute in the interacting region,
they are projected onto their eigenenergy component in the asymptotic region.

B:,O,e 'SDM Figure 3. Circles and triangles indicate

QMD results at given energies with and
without the Quantal Langevin force, re-
spectively. The upper and lower parts
show the distributions before and after
the statistical decay (SDM) calculation,
After SDM | respectively. The experimental data [1]
are shown by solid diamonds. Dotted lines
show the experimental data using a scaled
impact parameter assuming a maximum
impact parameter of 10 fm. The detector
P g v TS efficiency is not taken into account in the

b (fm) calculation. Taken from Ref. [10].

3

As an example, we show in Fig. 3 the calculated average multiplicity of intermediate-
mass fragments in a " Au+'%"Au collision at incident energies of 100, 250, and 400 MeV
per nucleon. In the upper figure, the calculated results with QMD with and without the
Quantal Langevin force are shown. Although two treatments seem to give qualitatively
the same results, the excitation energies of fragments are much lower when the Quantal
Langevin force is switched on. This can be seen in the lower figure, where the resulting
average IMF multiplicity after the statistical decay chains are shown. In the case of QMD
without the Quantal Langevin force, the excitation energies of the primary fragments are
large enough to largely eliminate the IMF component from the final mass distribution.
With the Quantal Langevin force, on the other hand, since a large part of the primary
fragments are already cooled enough to be intact, the difference between the average
multiplicities before and after the statistical decay is less than one.

4.2. Twin-Single Hypernuclear Formation in =~ Absorption at Rest

The above applications show that quantum fluctuations may be important even though
the systems considered have a large number of particles. Generally speaking, it is expected
that the effect of the fluctuations is larger in smaller systems, as we shall now illustrate.

One of the interesting phenomena in which quantum fluctuations are desired is the
hyperfragment production from =~ absorption at rest, which is important for the search
for double hypernucleus and H particle formation. In this reaction, the experimental data
suggest the double hypernucleus formation probability of 1~ 5% [12]. In addition, two
twin-single hyperfragment formation events were also observed. '2C'+Z~ — ‘H+-%Be [13].
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Since this fragmentation channel does not have the largest ) value, it is expected to occur
during the dynamical stage, rather than at the statistical stage [14].

The energy released in the elementary process Z~p — AA is around 30 MeV. This
corresponds to about 3 MeV per particle if this energy is distributed in many degrees of
freedom. Since this energy is smaller than the separation cnergy, the particle emission
will be strongly suppressed in a classical treatment. In the usual AMD treatment it is
calculated that a double hyper-compound nucleus is formed with a probability of more
than 70%. Even after the statistical decay, the calculated formation probahility of double
hypernucleus formation is about 30%, which is far above the experimentally suggested
value.

Therefore, we have applied the Quantal l.angevin model to the =~ absorption reac-
tion on '?C. Since a larger fluctuation is produced with this model, particle evapora-
tion, including A evaporation, is enhanced to reduce the formation probability of double
hypernuclei (~ 10% before statistical decay). In addition, the Quantal Langevin force
sometimes gives almost all the excitation energy to one degree of freedom. As is shown
in Fig. 4, after the relaxation of the energy initially carried by the two A particles to the
whole nucleus, a collective motion grows and the nucleus breaks up. The final fragments
are well deexcited (they become almost spherical and stable); thus we find that almost
all the energy is exhausted in the relative motion hetween the fragments.

5. SUMMARY AND OUTLOOK

We have shown the basic idea and some applications of the Quantal Langevin model.
The characteristic features of the Quantal Langevin model are the larger fluctuations
and the intrinsic distortion of wave packets. The combination of these two features
enhances fragments with low excitation and may modify the critical properties from those
in classical treatments. The inclusion of the quantal fluctuations has lec to improved
results for the nuclear fragment mass distribution in the canonical ensemble, the IMF
multiplicities in Au+Au collisions, and the fragmentation process from =~ absorption. A
shift of the critical temperature in atomic cluster formation is also suggested.

Some problems still remain in the formulation and application of the Quantal Langevin
model. First, the mobility tensor M cannot be determined by statistical requirements
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alone, and it may be necessary to invoke other fluctuation schemes as well [15,16]. Second,
it may be necessary to treat the energy dispersion related to the fragment center-of-mass
motion more carefully. Finally, when antisymmetrization is imposed, the parameters
of the wave packets are not canonical. Then the derivation of the dynamical equation
requires the transformation matrix between the parameters and the canonical variables.
Even with these unsolved problems, the Quantal Langevin model seems promising,
and it will be very exciting to attack the problem of nucleosynthesis in the early universe.
While the Inhomogeneous Big Bang Nucleosynthesis (IBBN) model is expected to describe
the primordial synthesis better, it has been pointed out that the fluctuations generated by
the QCD phase transition might be too small to explain the abundance of light nuclei in old
stars {17]. On the other hand, if the QCD phase transition makes dense baryonic matter,
there is a possibility that the evolution goes through the region of spinodal instability.
If so, the multifragmentation or the liquid-drop formation from this supercooled matter
may make nuclei heavier than those expected in the current IBBN model. (See Fig. 5.)

o INq P.T¢
5 Yy QGP Figure 5. Phase diagram of hadronic matter
é- Z’ / and the paths of nucleosynthesis assumed in dif-
el //// w.QCDP.T. ferent scenarios. In the scenario, we assumed
. Z—.. Hadron that the dense region of matter, which is cre-
y Unstablc B ¥ QCDHLG T ated in QCD phase transition, goes through the
T unstable region nuclear matter.
23p, P, Density
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